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Key messages

The Fourth Industrial Revolution will lead to a step change in the level of
autonomy in manufacturing facilities. Autonomy involves enabling machines
to make decisions that were previously made by humans. This movement
of responsibility for decision-making from humans to machines raises
a number of challenges when assuring the safety of the operations. The
challenges are exacerbated further by the use of artificial intelligence in
system training and control, and by the greater use of robots in areas where
there is close interaction between humans and machines (often referred to
as cobots).

In this paper, we first provide a general discussion of the challenges of
autonomy, and then we use three scenarios for manufacturing, representing
a progression through different levels of automation and autonomy. This
highlights how the nature and extent of the safety assurance challenge
increase for each scenario. We discuss possible approaches for addressing
the issues and identify the key open research challenges.
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1. Introduction to the importance to the Fourth Industrial
Revolution of safety assurance of autonomy

The advent of the Fourth Industrial Revolution (4IR) has many potential benefits
in terms of efficiency and cost-effectiveness of factory operations. However,
it also brings challenges relating to our ability to assure the safety of these
more advanced manufacturing facilities. Where the operation of a system may
adversely impact safety, it is necessary to show there is sufficient assurance that
the system is safe to operate prior to deploying that system into operation. By
assurance, we mean justified confidence in the properties and behaviour of the
system. While assuring the safety of factory operations is always challenging, 4IR
brings additional challenges and considerations that must be addressed. Many
of these arise from the introduction of increased autonomy — the movement of
responsibility for decision-making from humans to machines. The challenges of
4IR are exacerbated where artificial intelligence (Al) is used in system training and
control, and by the greater use of robots in areas where there is close interaction
between humans and machines (often referred to as cobots).

At the most fundamental level, assuring the safety of systems requires us to:

1. Provide a clear and unambiguous definition of how the system must behave in
all situations that the system might encounter during operation in order to be
considered safe.

2. Implement the system such that it provides the required behaviour and
generate evidence to demonstrate this.

3. Gain a detailed understanding of things that might go wrong when the system
is operating, identify if these might affect safety, and demonstrate that sufficient
mitigation has been put in place for those things.

In the following we refer to these as aspects of assurance. Each of these aspects
is challenging in its own right. There are accepted approaches to safety assurance
that have developed over several years, supported by regulations and standards,
in order to increase clarity on what is expected and to simplify compliance. For
example, in Europe one of the key instruments is the Machinery Directive!, which
places requirements on “machines” — an assembly fitted with a drive system
where at least one part of the system moves. The Directive invokes standard
safety principles, such as identifying hazards and risks. There are also similar
requirements in other parts of the world, for example, from the Occupational
Health and Safety Administration (OSHA) in the USA. Often there is a national-level
regulator, for example, the OSHA in the USA and the Health and Safety Executive
(HSE) in the UK, that enforces the rules.

Standards bodies, such as the International Organisation for Standardisation (ISO),
produce safety standards, for example, ISO 138572, which sets “safety distances” for
protecting people from hazards. Generally, these standards impose requirements
for simple physical barriers (see the scenarios in Section 3 below for more details).

1 Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive
95/16/EC.

2 1S0O 13857 First Edition 2008-03-01, Safety of Machinery — safety distances to prevent hazard zones being reached by upper
and lower limbs.
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Factories have long seen increases in automation, to reduce manning and to increase throughput,
quality and repeatability (among other things). The concept of computer numerical control (CNC)
machines dates back to the 1940s, with CNC milling machines being widely used in some manufacturing
processes. Simple factory robots (often no more than an arm with some specific tools attached) have
become widespread, for example, for welding and painting car bodies. Generally, the safety of such
systems is still achieved and assured through the use of physical separation of people and machines
— such as guard fencing.

Factory machines are now becoming more sophisticated, and there is an increasing desire to introduce
so-called cobots (collaborative robots), which work closely with human operators. This can be seen as
yet another evolutionary step in factory automation — but it is one that brings increasing challenges
— and we must consider why such systems cannot be addressed within existing safety assurance
practice and regulatory frameworks.

First, many of these systems, for example, cobots, now have humans and machines working in close
physical proximity, where physical separation is not a viable option — indeed, in many cases, the robot
and the human need to physically touch in order to carry out their joint task. Thus, more subtle forms
of safety mechanisms, for example, force limitation, are needed.

Second, as systems become more autonomous — meaning that what would otherwise be human
decision-making is transferred to a machine — it is much more difficult to predict and assess the
safety of the machine. This is in contrast to automated systems where the behaviour, for example, the
trajectory of a cutting head, is known and predictable.

In this paper, we first provide a general discussion of the challenges of autonomy, and then we use
three scenarios for manufacturing, representing a progression through different levels of automation
and autonomy. This highlights how the nature and extent of the safety assurance challenge change for
each scenario and discusses possible approaches for addressing those challenges. We also identify
the key open challenges and related needs in research and in education and training.



2. The challenges of autonomy

The introduction of autonomy into a factory setting involves enabling machines to
make decisions that were previously made by humans. Decisions made by humans
in a factory are often very complex, relying on the operator’s understanding of the
outcomes of decisions that are made and how those outcomes may be influenced
by the current situation in the factory. Many decisions are often made based on the
judgement, experience and instinct of the operator, which ensure that the decisions
result in a safe outcome. The safety assurance for such decisions arises from the
skill, training and contextual awareness of trusted operatives. Decisions that are
made by a machine whose consequences may impact safety will also require
assurance, which must be based upon explicit evidence about the behaviour of
the machine in the different situations it might encounter during operation.

This is a challenge even when the environment is constrained and static. It
becomes even harder when the autonomous system must operate within an open,
or unconstrained, environment. In addition, the more interaction the autonomous
machine has with other things in the environment, the harder safety assurance
becomes to achieve. The machine might be required to interact with other
machines, or to interact with humans. All machines operating within a factory setting
will need to interact with humans in some way. Even robots that are deemed to be
fully autonomous will normally have to share their space with humans, even if only
during exceptional periods such as for maintenance.

One approach for assuring autonomous systems is therefore to try to constrain the
environment in order to make it easier to provide guarantees about the machine’s
safety. In factories this is a very common strategy that has been adopted —
constraining the environment by installing physical barriers. This provides a
controlled and predictable working environment for the machine, but it also
crucially prevents humans and other machines from interacting with the machine in
uncontrolled ways. This approach, while making safety assurance much easier to
demonstrate, and essentially enabling traditional approaches to safety assurance
to be adopted, also limits the amount of autonomy that can be utilised. To fully
realise the benefits of autonomy in factories, such constraints on the operating
environment of the machine need to be relaxed to allow flexibility, and to enable
humans and machines to work together. This, in turn, makes the safety assurance
challenge harder and requires new approaches and techniques.

Many of the tasks that are being automated in factories, particularly in open and
dynamic environments, can be complex in nature. This can make it very difficult
to describe precisely how the machine must behave in every possible situation
it might encounter. Therefore, an approach that is increasingly being considered
is instead to get the machine to learn how to behave through training using a
technique known as machine learning (ML). Machines in factories could be trained
either by allowing them to operate in the factory setting under close supervision,
or by using a simulation. Normally a combination of real-world and simulation is
used to provide training data. Once the machine has been trained well enough, it
should then be able to cope safely with the situations it encounters in the factory.
There are a number of important assurance challenges concerning the use of ML,
which we discuss in more detail later.

Assurance of Advanced Manufacturing Copyright © 2019 University of York



3. Scenarios for autonomy and safety assurance in 4IR

To explain the issues introduced in Section 2 more fully, we discuss three
automation scenarios. The first two scenarios are relatively simple, representing
the progressive automation of factories. The third scenario is more challenging,
reflecting the issues arising from fully autonomous systems and cobots. However,
as almost all modern systems are computer controlled, we emphasise some of the
technical issues and what this means for assurance.

Inthe discussion we focus mainly on the third aspect of safety assurance introduced
above. In particular, we illustrate hazards — situations that, if uncontrolled, might
lead to harm — and the controls for the hazards.

3.4 Scenario 1 - physical barriers, fixed operation

In this scenario we consider two distinct examples of fixed operations: milling
machines and production line robots. The term “fixed operations” does not mean
that the machines cannot be repurposed, but rather that their purpose is likely to
be defined stably for a period of time, with explicit intervention needed to change
their function. However, in the examples used here the machines are fixed in the
sense of remaining in the same physical location.

CcoLuMN

SHROUD

CNC MACHINE REFERENCE

Figure 1- CNC milling machine

Most modern milling machines can produce complex-shaped components by
removing material from a “blank” — perhaps a cuboid metal block. Such machines
have interchangeable cutting heads and can turn both the work piece (the object
being cut) and the cutting head. For many years factories have used computer
numerical control (CNC) milling machines, where the cutting path and actions are
defined by a computer program. Figure 1shows a CNC milling machine?, indicating
the axes of movement — but with an operator to give an idea of scale. Modern

3 lllustration courtesy of www.efunda.com



machines do not have operators in attendance, and they usually have more degrees of freedom in
terms of moving the workpiece, as well as the tools.

Focusing on the safety perspective, the hazards generally relate to the production of high-energy
debris — parts of the work piece or tools “flying off” and striking people in the vicinity. Protection
“systems” will generally be simple. Should the hazard occur, there will be physical containment around
the machine, as can be seen in Figure 1. Hazard prevention includes keeping operators away from
the machine and powering off the machine prior to undertaking maintenance activities. More subtle
prevention mechanisms might include validation of the program to show that there are no unintended
interactions between the tool and work piece (this is assurance aspect 2) — for example, lateral force
on a drill — and perhaps force feedback sensors leading to the machine being powered down, if
forces near safe limits.

Production line robots (see Figure 2) can be used for a range of tasks, for example, assembly, welding,
painting; generally, the robots can be programmed to do different tasks, and the same type of robot
may be used at multiple points on a production line, each programmed for a particular task. These
robots are often powerful, capable of moving fast and with high forces. From a safety perspective,
the hazards generally involve physical contact between the robots and people — potentially causing
temporary or permanent injury. As well as physical impact, injury could also arise from the effects of
hot tools, for example, welding heads. Typically, the hazard is controlled by preventing humans being
in the area when the robots are operating, for example, through fencing with limited access points,
and ensuring that the robots are powered off if the access doors are opened (see Figure 3).

Figure 2 - Production-line robots Figure 3 - Robot with safety fencing
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Additionally, hazards might arise from high-energy debris, and this will be controlled by ensuring that
fences are high enough to prevent debris from going over the top (or enclosing the machines above
as well), by ensuring that the fence will contain debris up to an assessed energy level, and so on.
Some of the standards may help in defining fencing characteristics.*

3.2 Scenario 2 - virtual barriers, flexible operation

In this scenario, we consider two aspects of flexible operation: first, the machines move (are not at a
fixed location), and second, the purpose may change. For brevity, we focus more on the movement
of the machines.

We consider, as an example, automated guided vehicles (AGVs) that move blank work pieces and
partly machined parts around a factory. In essence the AGVs move from work station to work station,
carrying the parts. Thus, they might take blanks from goods inwards or a warehouse to a first machine,
move partially finished products between machines, and move completed parts to an assembly shop
or a dispatch centre.

Atypical AGV will be an electric vehicle, with sensors, for example, barcode readers, to help it navigate
and, say, infrared sensors to detect obstacles. A typical AGV is shown in Figure 4. An overview of a
simple factory operation using AGVs is shown in Figures 5 and 6. There will be mechanisms for
moving the work piece between the AGV and the workstations. AGVs might have mechanisms to
achieve/support the transfer, or this may be done entirely by mechanisms at each workstation.
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Figure 4 - Simple AGV with electric motor, sensors and computer control system

4 EN ISO 14120 Safety of Machinery guards. General requirements for the design, construction and selection of fixed and movable guards.
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Figure 6 - AGVs navigating using digital maps and barcode readers for localisation

The main hazards relate to impact with people causing injury. This can happen through hitting people
moving through the factory. However, probably the worst case is if someone is impacted by a falling
workpiece or the AGV itself (an AGV may weigh half a tonne or more). This might occur if an AGV
falls over an unprotected edge, for example, a loading bay, and lands on people below. More minor
hazards might relate to burns from hot parts being carried by the AGV, or possibly spills of fluids such
as battery acid. There are also problems relating to damage to other machines or equipment through
impact.

As a result of the nature of the AGV operation, hazard control via physical barriers, for example, fences,

Assurance of Advanced Manufacturing Copyright © 2019 University of York



is not practicable. There are several possible control mechanisms for the main (impact) hazards. A key
avoidance mechanism is verification of the planned paths through the factory to ensure that they
avoid static objects (noting that maps must be updated if the factory layout changes). In terms of
mitigation, if a hazard does arise the AGV can be fitted with sensors to detect impending impact and
apply the brakes, and soft-impact bumpers that might both apply the brakes and power off the motors.

There will also be value in using mechanisms that are not onboard the AGV to assist in hazard control.
For example, light curtains (see Figure 7) can be used to warn of proximity to an unprotected drop
in time to apply the brakes. More subtly, geofencing can be used to mark off “exclusion zones”
on digital maps that the navigation software would avoid in moving around the factory. Note that
this starts to emphasise the first and second aspects of safety assurance — how we specify clearly
the “prohibited areas” in the digital map, how we verify that the software for operating the AGV
determines location and assesses whether or not the trajectory will breach the prohibited areas and,
if so, how the emergency stop (applying brakes and powering off motors) is triggered. While, for
modern systems, this is not complex it does involve a substantial amount of software development,
analysis and testing. A range of standards are relevant,>® which require extensive verification and
validation of the software, addressing assurance aspect 2. A significant change between scenario 1
and scenario 2 is the increased emphasis on, and cost of, the software development and evidence-
generation activities.

If the purpose of the factory is changed, then the roles of the individual machines may alter — and
there may also be a change in the set of

machines employed. If the AGV system has been e,
designed well, the hazard-control mechanisms

will work equally well with the new machines I
and activities, and little extra development and

verification work will be needed. Perhaps the

biggest issue will be checking (validating) new

digital maps to ensure that the “safe navigation”

functions are appropriate for the new layout.

Note that safety of data is a key issue, and there

is now emerging guidance on such issues.”

As a final observation, safety processes must .
consider the whole operation. As AGVs will I

be designed to stop if there is a problem, *
consideration needs to be given to how they

will be restarted or “rescued”. Is this to be done Figure 7 - Light curtain
manually? If so, how, and what are the hazards

of sending workers onto the factory floor? If it is to be done remotely, how do the remote operations
interface with the automated functions of the AGV, can remote operations over-ride the emergency
braking, and so on? All of this is standard safety engineering good practice — and should be well
within the competence of an experienced professional.

5 IEC, 2010. 61508 ed2.0 — Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems. International Electrotechnical
Commission (IEC).

6 RTCA, 2012. DO178C — Software Considerations in Airborne Systems and Equipment Certification. Radio and Technical Commission for Aeronautics
(RTCA).
7 The Data Safety Initiative Working Group (DSIWG), Data Safety Guidance version 3.0, SCSC-127C, 2018, available at: https://scsc.uk/r127C:2
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3.3 Scenario 3 — Cooperative working, use of ML

Increasingly, robots are being used for tasks where they need to cooperate closely with humans;
hence, the physical separation used in the previous two examples cannot be achieved if the robots
are to be effective. This shift is coupled with the use of ML for training the robots, and both trends
bring with them challenges for safety and assurance. For simplicity, the scenario is split into two,
considering training robots offline, that is, prior to operation, and more dynamic operation where they
adapt their operation to the behaviour of an operator.

One method of training robots is for a human operator to “demonstrate” the performance of tasks
to a robot, which is then able to learn how to perform the tasks itself. Where the tasks are fixed
and performed in exactly the same manner each time, training the robot is straightforward, requiring
simple mimicking and repetition. For example, a robot manipulator that might be trained to perform
tasks is shown in Figure 8&.

In situations where the robot must perform
tasks in @ much more dynamic environment,
such as where humans are working in proximity
to the robot, it is not possible to demonstrate
to the robot how to perform every task in all
situations (the number of situations the robot
may encounter are too large and too uncertain).
The robot must instead be capable of learning
from specific examples how to perform the
tasks in a much more general manner. ML is
a technology that can enable robots to learn
how to perform tasks in dynamic environments
involving interactions with humans.

Figure 7 - Robot manipulator

As before, the hazards arise from physical interaction between the operator and the robot at sufficient
speed or force to cause injury. There are two aspects to assurance. First, will the robot reliably follow
a safe path? Second, will the robots stop (quickly enough) to prevent harm to the operator if there is
an impact?

For the first consideration, assuring a safe path for the robot is largely an issue of the integrity of
the software, and the accuracy of what has been learnt. For the simple case, the training process
will involve an operator carrying out the designated task or tasks multiple times, with the robot
“averaging” from the training sessions to produce the moves that will be implemented in operation.

8 Image courtesy of MCM
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For the more complex, dynamic case involving the use of ML the assurance process needs to consider
the sufficiency of the training data sets. This is a surprisingly complex issue. If the robot does not see
enough training data, it is less likely to learn correctly how to perform the task safely. Conversely, too
much training data may lead to “overfitting”, where the robot is very good at dealing with situations it
has encountered during training but is unable to safely adjust its behaviour to new situations. There
are strategies that can help to deal with this, such as computing an “envelope” within which the
robot can move (this might be done statistically), but determining what training data is good enough
from a safety assurance perspective remains an open challenge. Assurance also needs to consider
the underlying software on which the control algorithms rest — this might be a software package for
ML, for example, Google’s Tensorflow®, and will include software for reading sensors, controlling
actuators, and so on.

The use of software packages such as Tensorflow or Microsoft Cognitive Toolkit™® pose problems, as
the development process is not (normally) visible to the robot manufacturers or to regulators. Here
assurance arguments have to be based on arguments that the software has been “proven in use”. This
is known to be problematic" and standards may impose limitations on what can be claimed. There
are also issues of software updates (see Section 3.4 for more discussion). The assurance of control
software for sensors and actuators is “conventional” and can be carried out using the standards
identified above, for example, IEC 51508.

The second consideration is whether the robots stop (quickly enough) to prevent harm to the operator
if there is an impact. It is likely that “emergency stop” functions will be programmed explicitly, and this
will be subject to standard software assurance techniques, as discussed above. In practice, the most
difficult part might be to determine precisely what should be considered hazardous behaviour, taking
into account the range of physiology of the operators, the effects of personal protective equipment
(PPE), the size of workpieces that might be used, and whether or not workpieces are sufficiently hot
that even momentary touching could cause burns or cuts, and so on. Validation of the specifications
is likely to involve simulation, as “direct” validation would put operators at risk.

Where robots and operators engage in more dynamic collaboration the machines are often referred to
as cobots — or collaborative robots. The example in Figure 9 below shows cobots on a highly automated,
but flexible, production line. The cobots operate completely autonomously during production but
interact with operators for retooling (this is not within the competence of the machines). Both the
operator and the cobot move in a confined space, and the trajectories of movement can intersect —
hazards again relate to contact between the cobot or its end-effector (tool) and the operator. There
will need to be an “emergency stop” capability for the cobots — similar to that just described. The
assurance challenges come in the functions for avoiding impact.

9 https://www.tensorflow.org/

10 https://docs.microsoft.com/en-us/cognitive-toolkit/

11 Littlewood, B. and Strigini, L., 1995. Validation of ultra-high dependability for software-based systems. In Predictably Dependable Computing Systems (pp.
473-493). Springer, Berlin, Heidelberg.
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Figure 5 - Cobots in a factory setting

In the example of Figure 9%, the cobots carry out trajectory prediction, both for their own movement
and for that of the operators. If they predict that the paths will violate a minimum separation distance,
then the cobot will re-plan its movement. This is likely to be more subtle than an emergency stop, for
example, involving reducing speed or taking a longer path, to ensure that the system is able to operate
effectively. Furthermore, the minimum separation is likely to be small, as the operator may need to
“hand” a tool to the cobot, meaning that the distance is less than the overall dimensions of the tool.

An underlying challenge here is how to train the cobot in a safe manner. In order for the cobot to
learn how to avoid impact with humans, an effective approach may be to use a technique known as
reinforcement learning (RL)®. This is a form of ML where the cobot learns by being “rewarded” for
taking safe decisions, and “penalised” for taking unsafe decisions. Note that this approach requires
the cobot to make unsafe decisions while training in order to learn to avoid such decisions during
operation. It would of course not be acceptable to train the cobot by letting it conflict with operators in
the real world. It is therefore likely that simulation will be used to enable exploration of the operational
space, and to train the cobot to avoid hazardous situations without exposing operators to additional
risk. The assurance then rests on the soundness of the training environment, including the accuracy
of the simulation in modelling human, as well as cobot, movement, and the software used to evaluate
satisfaction of safety objectives. The success of the approach is also dependent on the correctness
of assumptions made in the simulation about operator physiology and behaviour (e.g. speed of
movement), and the behaviour of the cobot may not be safe if the operators do not behave in the way
that is modelled. It may be possible for the operators to wear non-conventional PPE, that is, fabrics
with embedded transponders, so that the cobot can determine the operator’s position accurately. This
would reduce the problems of invalid assumptions about operator movement (but this is not currently
standard technology, and would need to be introduced sensitively to the operators).

An alternative to using simulation to train the cobot is to try to assure safety “dynamically”, by adjusting
the cobot’s path based on predicted conflicts of trajectories. This involves changes in behaviour while
the cobot is operating, and this leads us to the concept of “dynamic assurance”, where assessment and

12 Image courtesy of MCM.
13 Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT Press.
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assurance of the safe behaviour are conducted during operation, namely, online not offline, and this is
likely to involve either or both of:

« Run-time verification™ - checking that the planned trajectories remain safe as they evolve, in a
similar way to guiding RL with safety objectives, but done at run-time not offline;

- Dynamic safety or assurance cases™ — updating the safety case with information from operation,
for example, on achieved separation distances between the cobot and the operator and providing
alerts if safety margins are being eroded.

Neither of these approaches are standard practice, although both are the subject of ongoing research.

RL is an established technique; however, its use for safety-related applications is the subject of much
ongoing research as a result of the number of potential difficulties. A widely cited paper on “concrete
problems of A" describes a number of example problems such as the notion of “reward hacking”,
which means meeting some overall objectives in learning behaviour while ignoring other aspects of
desirable behaviour. With our cobot example, if it learns to move on the shortest path between two
points (optimising time and energy usage) but ignoring the need to avoid conflicts in the overlap zone
shown in Figure 9, then this is potentially unsafe. As a result of the complexity and opacity of the
learning process, it is difficult to have confidence that such “reward hacking” has not occurred, as it
may only affect behaviour in some rare circumstances and hence not show up in system testing.

This scenario clearly highlights that whatis achievable in factories with the latest cutting-edge technology
far exceeds what it is currently possible to assure. The safety and assurance issues that arise with this
scenario are not within the competence of typical safety engineers. Furthermore, the online assurance
activities blur the boundaries between the traditional responsibilities of safety and design engineers.
There are also issues for regulators, as the assurance approaches being developed and deployed are
outside their experience. Thus, there is a major education and training need here. Finally, it should
be noted that there are major changes in work patterns for operators, again identifying a need for
education and training, and their inclusion in the proposed introduction of these technologies.

3.4 Connectivity and cross-cutting safety assurance issues

This paper has illustrated the issues related to the safety assurance of robots and autonomous
systems by considering some progressively more complex scenarios, with the later ones dependent
on ML. This progressive approach was taken to expose the range of assurance issues, but there are
also some cross-cutting concerns that could apply to all the scenarios. Many of these cross-cutting
concerns arise from the requirement to connect systems to a computer network. In order to implement
the capabilities discussed, it is inevitable that the robots will be network-connected at least some of
the time, and in practice most will be connected to the Internet, either directly or indirectly. In particular,
many modern factories make use of “Internet-of-Things” (IOT)"” technology to increase connectivity.

14 Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I. and Kelly, T., 2017. Engineering Trustworthy Self-Adaptive Software with Dynamic Assurance
Cases. IEEE Transactions on Software Engineering.

15 Denney, E., Pai, G. and Habili, I., 2015, May. Dynamic safety cases for through-life safety assurance. In 2015 |[EEE/ACM 37th |IEEE International Conference on
Software Engineering (Vol. 2, pp. 587-590). IEEE.

16 Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J. and Mané, D., 2016. Concrete problems in Al safety. arXiv preprint arXiv:1606.06565.
17 Telecommunication standardization sector of ITU. Overview of the Internet of things, Y.2060 edition, 6 2012.

15



16

This raises a number of unique safety assurance challenges.”® Here we focus on two such issues.

First, there is the issue of security that arises once any system becomes connected to a computer network.
Specifically, we are concerned with the impact that the exploitation of security vulnerabilities arising
from the connectivity might have on the safety of the robot. Safety and security have similar objectives,
being concerned with understanding and controlling the negative impact of system weaknesses, and
there are shared concerns relating to software integrity. However, the specific techniques used in the
two disciplines are quite different, and it is common for safety and security work to be carried out
independently, by two different sets of specialists.

There has been work on “unifying” safety and security over the years, particularly focused on the safety
impact of security exploits.”® In essence, these approaches involve considering the role that security
exploits might have in causing hazards, or in undermining hazard controls. While there is some practical
experience in using these techniques,?® their use is not (yet) common practice, and again there is an
issue of education and training, as safety specialists do not normally have a good understanding of
security, and vice versa. Moreover, there is growing understanding that the safety impact of security
concerns increases with autonomous systems, perhaps most obviously due to the limited opportunity
for human oversight/control of any security problems. Although there is research in this area it is far from
mature.

Second, there is the issue of software updates, including “over the air” updates for systems that are
connected via wireless networks. This can be seen most simply with the AGV example — if the factory
layout changes, and new maps are sent to the AGVs, how can we be confident that all the AGVs are
working with the new maps, and how can we assure synchronisation so that the AGVs do not use the new
maps prematurely? In essence, this can be done by having suitable protocols around map updates, and
the assurance process would need to focus on the soundness of the implementation of the protocols,
including what happens if updates are lost, corrupted, and so on. This is not unfamiliar territory for safety
engineers and should not be too challenging if changes to factory layout are infrequent and involve
“down time” while machines are moved or reprogrammed, among other things.

However, as updates become more dynamic, they become harder to assess and assure for safety.
Robots that update their control software during operation, for example, may share what they have
learnt with other robots operating in the same factory (thus improving the performance of the entire
fleet of robots). The underlying issue here is one of impact analysis — how “big” is the change, and how
far does its influence extend? Many updates might be benign — having a positive impact on safety, or at
least not having a negative impact — but how do we determine this? The more dynamic (frequent) the
updates, the harder this is to do.

It should also be considered that if robots learn during operation then they might all change their software
in different ways based on what they have learnt. As well as being challenging for safety assurance, this
is a problem for regulation, which normally approves all systems of a particular type, rather than each
system independently. This is acknowledged as a problem in some domains, for example, automotive,
but there are no widely recognised solutions to this problem in the public domain.

18 Jaradat, O,, Sljivo, |., Habli, I. and Hawkins, R., 2017, September. Challenges of safety assurance for industry 4.0. In 2017 13th European Dependable Computing
Conference (EDCC) (pp. 103-106). IEEE.

19 S. Kriaa et al., “A survey of approaches combining safety and security for industrial control systems”, Reliability Engineering and System Safety, 139 (2015)
156-178.

20 I. Fovinoa, M. Maseraa, A.Cianb, “Integrating cyber attacks within fault trees”, Reliability Engineering & System Safety, Volume 94, Issue 9, September 2009,
pages 1394-1402.
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4. Open challenges and areas for action for the safe
adoption of 4IR

The discussion above has identified a number of challenges — they are briefly
summarised here, followed by some general issues that should be addressed to
meet current and future industrial needs.

« Assurance of ML — gaining confidence in the use of ML to provide critical
functions (including decision-making) for factory robots, whether learning is
offline or during operation;

+ Run-time verification — assuring the safety of behaviour during operation,
where it is not practical to do so offline;

- Dynamic safety cases — updating safety cases with information from operations
so they accurately reflect the robot behaviour;

- Safety impact of security — providing an effective and practical means of
assessing and assuring safety where security weaknesses might contribute
to hazards;

«  Management of software updates — carrying out impact analysis to ensure that
any system changes have a known and acceptable impact on system safety;

- Agile assessment and regulation — responding rapidly to changes in systems
and software so that the assurance artefacts and regulatory approvals reflect
the current system status.

In some respects the last point is over-arching — most of the other points provide
a means of enabling agility in assessment and regulations.

Tackling these challenges will require industry, researchers and regulators to work
together in the following key areas.

Many of these issues require research, particularly research with an application
focus. There is significant interest in the verification of ML, for example, formal
analysis and testing of neural networks (NN), but much of the emphasis is on image
analysis, as this is of interest in many domains such as autonomous driving. This
is not particularly relevant in the context of advanced manufacturing, where the
focus is more upon decision-making for tasks such as path and motion planning.
In addition, much of the research on developing machine-learning algorithms
focuses on demonstrating small improvements in performance, which are often
less important for safety than the ability to, for example, reduce false-negative
classifications. Thus, research is needed that is more focused on the needs of
factory automation.
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There are education and training needs in safety assurance for professionals working in robot
development to bring people up to the ‘state of the art’ in assurance of robotics and to highlight the
areas where there remain unknowns. This includes training for:

+  Engineers - to ensure that safety assurance is properly considered during system development
«  Operators - who need to interact with the systems
« Management and board members - to ensure that appropriate governance takes place

+ Regulators and assessors — to ensure effective assessment and oversight of autonomous
operations

This will ensure that the risks and uncertainties of the evolving technology are taken into account
when designing and assessing systems. Working with operators to understand the information that
they need to have available (visual, audible, tangible, etc.) will also ensure that safely-operating cobots
are accepted, with appropriate information available to operators to engender justified confidence in
their use.

There needs to be work on updating standards to make them more relevant to future factory
automation. While there is some work underway, more needs to be done to reflect the capabilities of
even the current technology. More fundamentally, standards development needs to become much
more “agile”, namely, the ability to respond to changes in technology and systems design more
quickly. Typically, the development of standards takes years, and some, for example, the first issue
of IEC 61508, was in development for more than a decade. If standards cannot be updated more
rapidly, they will become irrelevant. This is a challenge for standards bodies, which might find their
role challenged, for example, by the introduction of more community-based good-practice guidelines.
Greater agility is needed in standards-making, and some standards bodies recognise the challenge
and are seeking to work more quickly, for example, by developing Publicly Available Specifications
(PAS) to set out initial guidance on a topic as a precursor to developing a full standard.

In the same way as for standards, the process of regulation must also become more agile to reflect
the pace of change in system development and deployment, and this must include dealing with
issues such as over-the-air updates. Regulators also face a shortage of the relevant skills resulting
from the rate of change of technology. This is exacerbated by the fact that it is more attractive for
those with the relevant knowledge and skills to work in industry developing and deploying, rather
than regulating, the technology.
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4.1 Key areas of action for the safe adoption of 4IR technologies in manufacturing

With the advancement of robotics, the 4IR, and around the assurance of these systems, especially
cobots, the manufacturing sector needs to investigate how to safely adopt these technologies.

A critical challenge for adopting modern robotics, using ML, is how to assure them and to gain
acceptance of the systems. A three-phase project, carried out across the sector, could help to address
this problem; the project would be best carried out by a working group set up with representatives
from a range of manufacturing organisations, covering the spectrum from small-scale specialist
developers to the operators of large facilities. The first phase should review the RECOLL project (see
Figures 8 and 9) to understand how this particular application of cobots has been assured. Second,
the sector should produce sector-specific arguments for assurance about cobots, and manufacturing
robotics more generally, building on the AAIP BoK (see Section 6) and template assurance arguments
produced by the Assuring Autonomy International Programme. Third, the working group should
identify the appropriate forms of evidence for supporting the arguments. If appropriate, this should
be documented as an industrial guideline, noting that industry can move much faster than standards
bodies.

The work on assurance would focus on gaining approval for 4IR products, but it would not address the
development of such products. These developments will need extensive tool support, for example,
for developing and testing the control software. As with the work on assurance, a working group could
seek to define and document best practice for development. Here the working group should include
developers and users of the 4IR technologies, but also include tool suppliers, especially those working
in other safety-related sectors that are already addressing some of these problems. The aim would be
to gain cross-sectoral requirements on development methods and to identify requirements for tools.
This would both help the developers and users of cobots and other 4IR products, and also serve to
stimulate the tools’ suppliers to develop more relevant products, by giving clearer requirements to
work to. Considering the inclusion of groups at the interface between academia and industry, such
as the Advanced Manufacturing Research Centre, will enable the working group to consider best
practice across different equipment manufacturers and developers, providing a wide perspective.
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Historically, techniques and methods for assessing safety and security have evolved independently,
although, as noted, there is some work on drawing the techniques together, including assessing the
impact of security weaknesses and vulnerabilities on system safety. The sector could work together
to provide practical and focused guidelines on assessing safety and security. A valuable perspective
is how to take safety and security into account early in the development life cycle when it is possible
to make trade-offs between safety and security, in the context of the system being developed. This is
a little-researched area, but it is important to managing safety and security in a cost-effective manner.
Some early work on this topic? might provide a useful starting point for a working group. This work
might usefully be merged, in time, with both the development guidelines — to help in producing safe
and secure systems — and the assurance strategies and arguments, to offer a basis for providing
broadly based assurance in systems.

21 Asplund, F., McDermid, J., Oates, R., Roberts, J. (2018) Rapid Integration of CPS Security and Safety, IEEE Embedded Systems Letters https://doi.org/10.1109/
LES.2018.2879631
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5. Conclusions

The advent of 4IR has many potential benefits in terms of efficiency and cost-
effectiveness of factory operations. However, it also brings challenges. Many of
these arise from autonomy itself — the movement of responsibility for decision-
making from humans to machines. The challenges are exacerbated by the use
of artificial intelligence in system training and control, and by the greater use of
robots in areas where there is close interaction between humans and machines
(often referred to as cobots), and so on.

Addressing these problems is a research issue, but there are wider issues too.
The robots being developed are outstripping the skills and experience of safety
professionals and regulators so there is a need for focused education and training
for this community, and work on standards, as well as assessment methods.

Thus, a broad-based set of initiatives is needed in order for industry to realise the
potential benefits from the 4IR. The Assuring Autonomy International Programme
(AAIP), funded by the Lloyd’s Register Foundation, is addressing some of the
key issues as a cross-sectoral concern — with some effort focused on advanced
manufacturing. Thus, the programme can assist in solving the problems, but more
work is needed that is focused explicitly on the 4IR to enable the benefits to be
realised, safely, in the near term. The Programme also has the remit to influence
standards and regulations, and to provide education and training, and thus is
intended to address many of the challenges identified here.
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6. Suggested resources

The AAIP is developing a Body of Knowledge (BoK)?? to reflect the evolving state-
of-practice and state-of-the-artin assuring and regulating robotics and autonomous
systems across domains. Thus, in time, the BoK should include material that is
directly relevant to advanced manufacturing, for example, based on the cobots
illustrated in Figure 9. It will also include material developed in other domains, for
example, on the interaction of security and safety, which may be relevant to the
sector.

Inthe UK, the Health and Safety Executive (HSE) publishes extensively on machinery
and equipment safety,® and the HSE’s guidance may also be relevant in other
countries, as a result of the (current) harmonisation with European legislation.

The UK’s Manufacturing Technologies Association (MTA)?* is a long-standing
trade body in the UK, which provides information on a range of manufacturing
technologies. The MTA's Standards Update provides information on the fast-moving
set of standards in the sector, including identifying work on safety standards.

Information on the safety of manufacturers’ robots can be found on their websites;
Kuka?® addresses issues regarding the safety of cobots directly, and other
manufacturers, for example, ABB,?® also provide safety capabilities for their factory
robots. Note that the reference to these two manufacturers is intended to identify
relevant information, not to endorse specific products.

22 https://www.york.ac.uk/assuring-autonomy/body-of-knowledge/

23 http://www.hse.gov.uk/work-equipment-machinery/index.htm

24 https://www.mta.org.uk

25 https://www.kuka.com/en-gb/products/robotics-systems/software/hub-technologies/kuka_safeoperation
26 https://new.abb.com/products/robotics/controllers/irc5/irc5-options/safemove-2
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